Contextuality: at the borders of paradox

Samson Abramsky
Joint work with Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield

Department of Computer Science, University of Oxford

The Sheaf Team

Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield

Contextuality

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Desiderata: analysis of general concepts, structural theory. Disentangling contextuality from QM

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Desiderata: analysis of general concepts, structural theory. Disentangling contextuality from QM

Our claims:

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Desiderata: analysis of general concepts, structural theory. Disentangling contextuality from QM

Our claims:

- Contextuality is a general phenomenon. It appears pervasively in many fields, e.g. logic and CS. Non-locality is a special case.

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Desiderata: analysis of general concepts, structural theory.
Disentangling contextuality from QM
Our claims:

- Contextuality is a general phenomenon. It appears pervasively in many fields, e.g. logic and CS. Non-locality is a special case.
- There is a general structure and mathematical theory of contextuality, applicable across these fields.

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Desiderata: analysis of general concepts, structural theory.
Disentangling contextuality from QM
Our claims:

- Contextuality is a general phenomenon. It appears pervasively in many fields, e.g. logic and CS. Non-locality is a special case.
- There is a general structure and mathematical theory of contextuality, applicable across these fields.
- Contextual probability, Contextual semantics.

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Desiderata: analysis of general concepts, structural theory.
Disentangling contextuality from QM
Our claims:

- Contextuality is a general phenomenon. It appears pervasively in many fields, e.g. logic and CS. Non-locality is a special case.
- There is a general structure and mathematical theory of contextuality, applicable across these fields.
- Contextual probability, Contextual semantics.

What is contextuality, as a problematic, non-classical phenomenon?

Contextuality

Renewed interest in contextuality in quantum information and foundations, as a resource in quantum information processing - perhaps the key one. (Howard, Wallman, Veith and Emerson, Nature 2014, Raussendorf PRA 2013).

Desiderata: analysis of general concepts, structural theory.
Disentangling contextuality from QM
Our claims:

- Contextuality is a general phenomenon. It appears pervasively in many fields, e.g. logic and CS. Non-locality is a special case.
- There is a general structure and mathematical theory of contextuality, applicable across these fields.
- Contextual probability, Contextual semantics.

What is contextuality, as a problematic, non-classical phenomenon?
In a nutshell: where we have a family of data which is locally consistent, but globally inconsistent.

Contextuality Analogy: Local Consistency

Contextuality Analogy: Local Consistency

Contextuality Analogy: Global Inconsistency

The Borders of Paradox

The Borders of Paradox

If this phenomenon arises with observable data, reflecting physical reality, it takes us to the borders of paradox.

The Borders of Paradox

If this phenomenon arises with observable data, reflecting physical reality, it takes us to the borders of paradox.

What saves us from a direct conflict between logic and experience is that the data cannot be directly observed globally.
We cannot observe all the variables at the same time.

The Borders of Paradox

If this phenomenon arises with observable data, reflecting physical reality, it takes us to the borders of paradox.

What saves us from a direct conflict between logic and experience is that the data cannot be directly observed globally.
We cannot observe all the variables at the same time.
A "transcendental deduction" of the incompatibility (in general) of observables.

The mathematics of contextuality

The mathematics of contextuality

Thus contextuality is fundamentally about the passage from local to global, and obstructions to such a passage.

The mathematics of contextuality

Thus contextuality is fundamentally about the passage from local to global, and obstructions to such a passage.

The natural mathematical language for talking about this is sheaf theory.

The mathematics of contextuality

Thus contextuality is fundamentally about the passage from local to global, and obstructions to such a passage.

The natural mathematical language for talking about this is sheaf theory.
And we can use sheaf cohomology to witness contextuality.

The mathematics of contextuality

Thus contextuality is fundamentally about the passage from local to global, and obstructions to such a passage.

The natural mathematical language for talking about this is sheaf theory.
And we can use sheaf cohomology to witness contextuality.

Why is this important? Cohomology is one of the major tools of modern mathematics.

The mathematics of contextuality

Thus contextuality is fundamentally about the passage from local to global, and obstructions to such a passage.

The natural mathematical language for talking about this is sheaf theory.
And we can use sheaf cohomology to witness contextuality.

Why is this important? Cohomology is one of the major tools of modern mathematics.

Has been conspicuously absent from this field (and indeed from Computer Science, logic, etc.)

The mathematics of contextuality

Thus contextuality is fundamentally about the passage from local to global, and obstructions to such a passage.

The natural mathematical language for talking about this is sheaf theory.
And we can use sheaf cohomology to witness contextuality.

Why is this important? Cohomology is one of the major tools of modern mathematics.

Has been conspicuously absent from this field (and indeed from Computer Science, logic, etc.)

Our results show that it does apply, in a very direct way, to the analysis of contextuality.

Quality as quantity

Quality as quantity

An objection: the real content of quantum mechanics involves probabilities, Bell inequalities, etc. ...

Quality as quantity

An objection: the real content of quantum mechanics involves probabilities, Bell inequalities, etc. ...

But in fact, it turns out that there is a unifying principle for Bell inequalities based on logical consistency conditions.

Quality as quantity

An objection: the real content of quantum mechanics involves probabilities, Bell inequalities, etc. ...

But in fact, it turns out that there is a unifying principle for Bell inequalities based on logical consistency conditions.

In fact, all Bell inequalities arise from purely logical consistency conditions.

Quality as quantity

An objection: the real content of quantum mechanics involves probabilities, Bell inequalities, etc. ...

But in fact, it turns out that there is a unifying principle for Bell inequalities based on logical consistency conditions.

In fact, all Bell inequalities arise from purely logical consistency conditions.
Logical and sheaf-theoretic structure also plays a key rôle in discerning a hierarchy of degrees of contextuality.

Alice and Bob look at bits

A Probabilistic Model Of An Experiment

A Probabilistic Model Of An Experiment

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

A Probabilistic Model Of An Experiment

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The entry in row 2 column 3 says:
If Alice looks at a_{1} and Bob looks at b_{2}, then $1 / 8$ th of the time, Alice sees a 0 and Bob sees a 1 .

A Probabilistic Model Of An Experiment

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The entry in row 2 column 3 says:
If Alice looks at a_{1} and Bob looks at b_{2}, then $1 / 8$ th of the time, Alice sees a 0 and Bob sees a 1 .

How can we explain this behaviour?

Classical Correlations: The Classical Source

Target

A Simple Observation

A Simple Observation

Suppose we have propositional formulas $\phi_{1}, \ldots, \phi_{N}$

A Simple Observation

Suppose we have propositional formulas $\phi_{1}, \ldots, \phi_{N}$
Suppose further we can assign a probability $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$ to each ϕ_{i}.

A Simple Observation

Suppose we have propositional formulas $\phi_{1}, \ldots, \phi_{N}$
Suppose further we can assign a probability $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$ to each ϕ_{i}.
(Story: perform experiment to test the variables in $\phi_{i} ; p_{i}$ is the relative frequency of the trials satisfying ϕ_{i}.)

A Simple Observation

Suppose we have propositional formulas $\phi_{1}, \ldots, \phi_{N}$
Suppose further we can assign a probability $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$ to each ϕ_{i}.
(Story: perform experiment to test the variables in $\phi_{i} ; p_{i}$ is the relative frequency of the trials satisfying ϕ_{i}.)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N},
$$

A Simple Observation

Suppose we have propositional formulas $\phi_{1}, \ldots, \phi_{N}$
Suppose further we can assign a probability $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$ to each ϕ_{i}.
(Story: perform experiment to test the variables in $\phi_{i} ; p_{i}$ is the relative frequency of the trials satisfying ϕ_{i}.)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N}, \quad \text { or equivalently } \quad \phi_{N} \Rightarrow \bigvee_{i=1}^{N-1} \neg \phi_{i}
$$

A Simple Observation

Suppose we have propositional formulas $\phi_{1}, \ldots, \phi_{N}$
Suppose further we can assign a probability $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$ to each ϕ_{i}.
(Story: perform experiment to test the variables in $\phi_{i} ; p_{i}$ is the relative frequency of the trials satisfying ϕ_{i}.)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N}, \quad \text { or equivalently } \quad \phi_{N} \Rightarrow \bigvee_{i=1}^{N-1} \neg \phi_{i}
$$

Using elementary probability theory, we can calculate:

$$
p_{N} \leq \operatorname{Prob}\left(\bigvee_{i=1}^{N-1} \neg \phi_{i}\right) \leq \sum_{i=1}^{N-1} \operatorname{Prob}\left(\neg \phi_{i}\right)=\sum_{i=1}^{N-1}\left(1-p_{i}\right)=(N-1)-\sum_{i=1}^{N-1} p_{i}
$$

A Simple Observation

Suppose we have propositional formulas $\phi_{1}, \ldots, \phi_{N}$
Suppose further we can assign a probability $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$ to each ϕ_{i}.
(Story: perform experiment to test the variables in $\phi_{i} ; p_{i}$ is the relative frequency of the trials satisfying ϕ_{i}.)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N}, \quad \text { or equivalently } \quad \phi_{N} \Rightarrow \bigvee_{i=1}^{N-1} \neg \phi_{i}
$$

Using elementary probability theory, we can calculate:

$$
p_{N} \leq \operatorname{Prob}\left(\bigvee_{i=1}^{N-1} \neg \phi_{i}\right) \leq \sum_{i=1}^{N-1} \operatorname{Prob}\left(\neg \phi_{i}\right)=\sum_{i=1}^{N-1}\left(1-p_{i}\right)=(N-1)-\sum_{i=1}^{N-1} p_{i}
$$

Hence we obtain the inequality

$$
\sum_{i=1}^{N} p_{i} \leq N-1
$$

Logical analysis of the Bell table

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are represented by the following propositions:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \wedge b_{1}\right) \vee\left(\neg a_{1} \wedge \neg b_{1}\right)=a_{1} \leftrightarrow b_{1} \\
& \varphi_{2}=\left(a_{1} \wedge b_{2}\right) \vee\left(\neg a_{1} \wedge \neg b_{2}\right)=a_{1} \leftrightarrow b_{2} \\
& \varphi_{3}=\left(a_{2} \wedge b_{1}\right) \vee\left(\neg a_{2} \wedge \neg b_{1}\right)=a_{2} \leftrightarrow b_{1} \\
& \varphi_{4}=\left(\neg a_{2} \wedge b_{2}\right) \vee\left(a_{2} \wedge \neg b_{2}\right)=a_{2} \oplus b_{2} .
\end{aligned}
$$

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are represented by the following propositions:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \wedge b_{1}\right) \vee\left(\neg a_{1} \wedge \neg b_{1}\right)=a_{1} \leftrightarrow b_{1} \\
& \varphi_{2}=\left(a_{1} \wedge b_{2}\right) \vee\left(\neg a_{1} \wedge \neg b_{2}\right)=a_{1} \leftrightarrow b_{2} \\
& \varphi_{3}=\left(a_{2} \wedge b_{1}\right) \vee\left(\neg a_{2} \wedge \neg b_{1}\right)=a_{2} \leftrightarrow b_{1} \\
& \varphi_{4}=\left(\neg a_{2} \wedge b_{2}\right) \vee\left(a_{2} \wedge \neg b_{2}\right)=a_{2} \oplus b_{2} .
\end{aligned}
$$

These propositions are easily seen to be contradictory.

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are represented by the following propositions:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \wedge b_{1}\right) \vee\left(\neg a_{1} \wedge \neg b_{1}\right)=a_{1} \leftrightarrow b_{1} \\
& \varphi_{2}=\left(a_{1} \wedge b_{2}\right) \vee\left(\neg a_{1} \wedge \neg b_{2}\right)=a_{1} \leftrightarrow b_{2} \\
& \varphi_{3}=\left(a_{2} \wedge b_{1}\right) \vee\left(\neg a_{2} \wedge \neg b_{1}\right)=a_{2} \leftrightarrow b_{1} \\
& \varphi_{4}=\left(\neg a_{2} \wedge b_{2}\right) \vee\left(a_{2} \wedge \neg b_{2}\right)=a_{2} \oplus b_{2} .
\end{aligned}
$$

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is $1 / 4$.

Example: the Hardy model

The support of the Hardy model:

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
(a, b)	1	1	1	1
$\left(a^{\prime}, b\right)$	0	1	1	1
$\left(a, b^{\prime}\right)$	0	1	1	1
$\left(a^{\prime}, b^{\prime}\right)$	1	1	1	0

Example: the Hardy model

The support of the Hardy model:

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
(a, b)	1	1	1	1
$\left(a^{\prime}, b\right)$	0	1	1	1
$\left(a, b^{\prime}\right)$	0	1	1	1
$\left(a^{\prime}, b^{\prime}\right)$	1	1	1	0

If we interpret outcome 0 as true and 1 as false, then the following formulas all have positive probability:

$$
a \wedge b, \quad \neg\left(a \wedge b^{\prime}\right), \quad \neg\left(a^{\prime} \wedge b\right), \quad a^{\prime} \vee b^{\prime}
$$

Example: the Hardy model

The support of the Hardy model:

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
(a, b)	1	1	1	1
$\left(a^{\prime}, b\right)$	0	1	1	1
$\left(a, b^{\prime}\right)$	0	1	1	1
$\left(a^{\prime}, b^{\prime}\right)$	1	1	1	0

If we interpret outcome 0 as true and 1 as false, then the following formulas all have positive probability:

$$
a \wedge b, \quad \neg\left(a \wedge b^{\prime}\right), \quad \neg\left(a^{\prime} \wedge b\right), \quad a^{\prime} \vee b^{\prime}
$$

However, these formulas are not simultaneously satisfiable.

Example: the Hardy model

The support of the Hardy model:

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
(a, b)	1	1	1	1
$\left(a^{\prime}, b\right)$	0	1	1	1
$\left(a, b^{\prime}\right)$	0	1	1	1
$\left(a^{\prime}, b^{\prime}\right)$	1	1	1	0

If we interpret outcome 0 as true and 1 as false, then the following formulas all have positive probability:

$$
a \wedge b, \quad \neg\left(a \wedge b^{\prime}\right), \quad \neg\left(a^{\prime} \wedge b\right), \quad a^{\prime} \vee b^{\prime}
$$

However, these formulas are not simultaneously satisfiable.
In this model, $p_{2}=p_{3}=p_{4}=1$.

Example: the Hardy model

The support of the Hardy model:

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
(a, b)	1	1	1	1
$\left(a^{\prime}, b\right)$	0	1	1	1
$\left(a, b^{\prime}\right)$	0	1	1	1
$\left(a^{\prime}, b^{\prime}\right)$	1	1	1	0

If we interpret outcome 0 as true and 1 as false, then the following formulas all have positive probability:

$$
a \wedge b, \quad \neg\left(a \wedge b^{\prime}\right), \quad \neg\left(a^{\prime} \wedge b\right), \quad a^{\prime} \vee b^{\prime}
$$

However, these formulas are not simultaneously satisfiable.
In this model, $p_{2}=p_{3}=p_{4}=1$.
Hence the Hardy model achieves a violation of $p_{1}=\operatorname{Prob}(a \wedge b)$ for the logical Bell inequality.

A Possibilistic Model Of An Experiment

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

The entry in row 1 column 1 says:
If Alice looks at a_{1} and Bob looks at b_{1}, then sometimes Alice sees a 0 and Bob sees a 0 .

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

The entry in row 1 column 1 says:
If Alice looks at a_{1} and Bob looks at b_{1}, then sometimes Alice sees a 0 and Bob sees a 0 .

The entry in row 2 column 1 says:
If Alice looks at a_{1} and Bob looks at b_{2}, then it never happens that Alice sees a 0 and Bob sees a 0 .

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

The entry in row 1 column 1 says:
If Alice looks at a_{1} and Bob looks at b_{1}, then sometimes Alice sees a 0 and Bob sees a 0 .

The entry in row 2 column 1 says:
If Alice looks at a_{1} and Bob looks at b_{2}, then it never happens that Alice sees a 0 and Bob sees a 0 .

Can we explain this behaviour using a classical source?

What Do 'Observables' Observe?

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

More precisely, this would say that for each possible state of the system, there is a function λ which for each measurement m specifies an outcome $\lambda(m)$, independently of which other measurements may be performed.

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

More precisely, this would say that for each possible state of the system, there is a function λ which for each measurement m specifies an outcome $\lambda(m)$, independently of which other measurements may be performed.

This point of view is called non-contextuality. It is equivalent to the assumption of a classical source.

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

More precisely, this would say that for each possible state of the system, there is a function λ which for each measurement m specifies an outcome $\lambda(m)$, independently of which other measurements may be performed.

This point of view is called non-contextuality. It is equivalent to the assumption of a classical source.

However, this view is impossible to sustain in the light of our actual observations of (micro)-physical reality.

Hidden Variables: The Mermin instruction set picture

The 'Hardy Paradox'

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$			0	

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0
$$

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0	$?$		
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0 .
$$

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0	1		
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0
$$

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0	1		
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$		$?$	0	

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0 .
$$

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0	1		
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$		1		0

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0 .
$$

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0	1		
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$		1	0	

So there is a unique 'instruction set' λ that outcomes $(0,0)$ for measurements (a_{1}, b_{1}) could come from:

$$
\lambda: a_{1} \mapsto 0, \quad a_{2} \mapsto 0, \quad b_{1} \mapsto 0, \quad b_{2} \mapsto 1 .
$$

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0	1		
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$		1	0	

So there is a unique 'instruction set' λ that outcomes $(0,0)$ for measurements (a_{1}, b_{1}) could come from:

$$
\lambda: a_{1} \mapsto 0, \quad a_{2} \mapsto 0, \quad b_{1} \mapsto 0, \quad b_{2} \mapsto 1 .
$$

However, this would require the outcome $(0,0)$ for measurements $\left(a_{2}, b_{1}\right)$ to be possible, and this is precluded.

The 'Hardy Paradox'

Hardy models: those whose support satisfies

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0	1		
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$		1	0	

So there is a unique 'instruction set' λ that outcomes $(0,0)$ for measurements (a_{1}, b_{1}) could come from:

$$
\lambda: a_{1} \mapsto 0, \quad a_{2} \mapsto 0, \quad b_{1} \mapsto 0, \quad b_{2} \mapsto 1 .
$$

However, this would require the outcome $(0,0)$ for measurements $\left(a_{2}, b_{1}\right)$ to be possible, and this is precluded.

Thus Hardy models are contextual. They cannot be explained by a classical source.

Quantum Mechanics changes the game

Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.

Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.
However, if we use quantum rather than classical resources, it is realisable!

Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.
However, if we use quantum rather than classical resources, it is realisable!
More specifically, if we use an entangled qubit as a shared resource between Alice and Bob, who may be spacelike separated, then behaviour of exactly the kind we have considered can be achieved.

Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.
However, if we use quantum rather than classical resources, it is realisable!
More specifically, if we use an entangled qubit as a shared resource between Alice and Bob, who may be spacelike separated, then behaviour of exactly the kind we have considered can be achieved.

Alice and Bob's choices are now of measurement setting (e.g. which direction to measure spin) rather than "which register to load".

A Possibilistic Model Of An Experiment

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$			0	

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$			0	

This model can be physically realised in quantum mechanics.

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

This model can be physically realised in quantum mechanics.
There is an entangled state of two qubits, and directions for spin measurements a_{1}, a_{2} for Alice and b_{1}, b_{2} for Bob, which generate this table according to the predictions of quantum mechanics.

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$			0	

This model can be physically realised in quantum mechanics.
There is an entangled state of two qubits, and directions for spin measurements a_{1}, a_{2} for Alice and b_{1}, b_{2} for Bob, which generate this table according to the predictions of quantum mechanics.

Moreover, behaviour of this kind has been extensively experimentally confirmed.

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

This model can be physically realised in quantum mechanics.
There is an entangled state of two qubits, and directions for spin measurements a_{1}, a_{2} for Alice and b_{1}, b_{2} for Bob, which generate this table according to the predictions of quantum mechanics.

Moreover, behaviour of this kind has been extensively experimentally confirmed.
This is really how the world is!

A Possibilistic Model Of An Experiment

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1			
$\left(a_{1}, b_{2}\right)$	0			
$\left(a_{2}, b_{1}\right)$	0			
$\left(a_{2}, b_{2}\right)$				0

This model can be physically realised in quantum mechanics.
There is an entangled state of two qubits, and directions for spin measurements a_{1}, a_{2} for Alice and b_{1}, b_{2} for Bob, which generate this table according to the predictions of quantum mechanics.

Moreover, behaviour of this kind has been extensively experimentally confirmed.
This is really how the world is!
This proves a strong version of Bell's theorem.

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

$b^{\prime} \bullet$

- a^{\prime}
- b

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Strong Contextuality

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0

The PR Box

Bundle Pictures

Strong Contextuality

- E.g. the PR box:

	00	01	10	11
$a b$	\checkmark	\times	\times	\checkmark
$a b^{\prime}$	\checkmark	\times	\times	\checkmark
$a^{\prime} b$	\checkmark	\times	\times	\checkmark
$a^{\prime} b^{\prime}$	\times	\checkmark	\checkmark	\times

Visualizing Contextuality

The Hardy table and the PR box as bundles

Contextuality, Logic and Paradoxes

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements
$S_{1}: S_{2}$ is true,
$S_{2}: S_{3}$ is true,
$S_{N-1}: S_{N}$ is true,
$S_{N}: S_{1}$ is false.
For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements
$S_{1}: S_{2}$ is true,
$S_{2}: S_{3}$ is true,
$S_{N-1}: S_{N}$ is true,
$S_{N}: S_{1}$ is false.
For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Following Cook, Walicki et al. we can model the situation by boolean equations:

$$
x_{1}=x_{2}, \quad \ldots, \quad x_{n-1}=x_{n}, \quad x_{n}=\neg x_{1}
$$

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements
$S_{1}: S_{2}$ is true,
$S_{2}: S_{3}$ is true,

$$
\begin{array}{r}
S_{N-1}: S_{N} \text { is true, } \\
S_{N}: S_{1} \text { is false. }
\end{array}
$$

For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Following Cook, Walicki et al. we can model the situation by boolean equations:

$$
x_{1}=x_{2}, \ldots, \quad x_{n-1}=x_{n}, \quad x_{n}=\neg x_{1}
$$

The "paradoxical" nature of the original statements is now captured by the inconsistency of these equations.

Contextuality in the Liar; Liar cycles in the PR Box

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to the attempt to find a univocal path in the bundle diagram.

Paths to contradiction

Paths to contradiction

Suppose that we try to set a_{2} to 1 . Following the path on the right leads to the following local propagation of values:

$$
\begin{aligned}
& a_{2}=1 \leadsto b_{1}=1 \leadsto a_{1}=1 \leadsto b_{2}=1 \leadsto a_{2}=0 \\
& a_{2}=0 \leadsto b_{1}=0 \leadsto a_{1}=0 \leadsto b_{2}=0 \leadsto a_{2}=1
\end{aligned}
$$

Paths to contradiction

Suppose that we try to set a_{2} to 1 . Following the path on the right leads to the following local propagation of values:

$$
\begin{aligned}
& a_{2}=1 \leadsto b_{1}=1 \leadsto a_{1}=1 \leadsto b_{2}=1 \leadsto a_{2}=0 \\
& a_{2}=0 \leadsto b_{1}=0 \leadsto a_{1}=0 \leadsto b_{2}=0 \leadsto a_{2}=1
\end{aligned}
$$

We have discussed a specific case here, but the analysis can be generalised to a large class of examples.

The Robinson Consistency Theorem

The Robinson Consistency Theorem

A classic result:
Theorem (Robinson Joint Consistency Theorem)
Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary case, local consistency implies global consistency.

The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails. That is, if we have three theories which are pairwise compatible, it need not be the case that they can be glued together consistently.

The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails. That is, if we have three theories which are pairwise compatible, it need not be the case that they can be glued together consistently.

A minimal counter-example is provided at the propositional level by the following "triangle":

$$
T_{1}=\left\{x_{1} \longrightarrow \neg x_{2}\right\}, T_{2}=\left\{x_{2} \longrightarrow \neg x_{3}\right\}, T_{3}=\left\{x_{3} \longrightarrow \neg x_{1}\right\} .
$$

The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails. That is, if we have three theories which are pairwise compatible, it need not be the case that they can be glued together consistently.

A minimal counter-example is provided at the propositional level by the following "triangle":

$$
T_{1}=\left\{x_{1} \longrightarrow \neg x_{2}\right\}, T_{2}=\left\{x_{2} \longrightarrow \neg x_{3}\right\}, T_{3}=\left\{x_{3} \longrightarrow \neg x_{1}\right\} .
$$

This example is well-known in the quantum contextuality literature as the Specker triangle.

Sheaf formulation of contextuality

Measurement scenarios $\langle X, \mathcal{M}, O\rangle$:

Sheaf formulation of contextuality

Measurement scenarios $\langle X, \mathcal{M}, O\rangle$:

- X is a set of variables or measurement labels. Sufficient to consider finite discrete space - the base space of the bundle.

Sheaf formulation of contextuality

Measurement scenarios $\langle X, \mathcal{M}, O\rangle$:

- X is a set of variables or measurement labels. Sufficient to consider finite discrete space - the base space of the bundle.
- $\mathcal{M}=\left\{C_{i}\right\}_{i \in I}$ set of contexts i.e. co-measurable variables. In quantum terms, compatible observables.

Sheaf formulation of contextuality

Measurement scenarios $\langle X, \mathcal{M}, O\rangle$:

- X is a set of variables or measurement labels. Sufficient to consider finite discrete space - the base space of the bundle.
- $\mathcal{M}=\left\{C_{i}\right\}_{i \in I}$ set of contexts i.e. co-measurable variables. In quantum terms, compatible observables.
- O is set of outcomes or values for the variables, which we take to be the same in each fibre.

We have a sheaf of sets over $\mathcal{P}(X)$, namely $\mathcal{E}:: U \longmapsto O^{U}$ with restriction

$$
\mathcal{E}\left(U \subseteq U^{\prime}\right): \mathcal{E}\left(U^{\prime}\right) \longrightarrow \mathcal{E}(U):: s \longmapsto s \mid U .
$$

Sheaf formulation of contextuality

Measurement scenarios $\langle X, \mathcal{M}, O\rangle$:

- X is a set of variables or measurement labels. Sufficient to consider finite discrete space - the base space of the bundle.
- $\mathcal{M}=\left\{C_{i}\right\}_{i \in I}$ set of contexts i.e. co-measurable variables. In quantum terms, compatible observables.
- O is set of outcomes or values for the variables, which we take to be the same in each fibre.

We have a sheaf of sets over $\mathcal{P}(X)$, namely $\mathcal{E}:: U \longmapsto O^{U}$ with restriction

$$
\mathcal{E}\left(U \subseteq U^{\prime}\right): \mathcal{E}\left(U^{\prime}\right) \longrightarrow \mathcal{E}(U):: s \longmapsto s \mid U .
$$

Each $s \in \mathcal{E}(U)$ is a section, and, in particular, $g \in \mathcal{E}(X)$ is a global section.

Sheaf formulation of contextuality

Measurement scenarios $\langle X, \mathcal{M}, O\rangle$:

- X is a set of variables or measurement labels. Sufficient to consider finite discrete space - the base space of the bundle.
- $\mathcal{M}=\left\{C_{i}\right\}_{i \in I}$ set of contexts i.e. co-measurable variables. In quantum terms, compatible observables.
- O is set of outcomes or values for the variables, which we take to be the same in each fibre.

We have a sheaf of sets over $\mathcal{P}(X)$, namely $\mathcal{E}:: U \longmapsto O^{U}$ with restriction

$$
\mathcal{E}\left(U \subseteq U^{\prime}\right): \mathcal{E}\left(U^{\prime}\right) \longrightarrow \mathcal{E}(U):: s \longmapsto s \mid U .
$$

Each $s \in \mathcal{E}(U)$ is a section, and, in particular, $g \in \mathcal{E}(X)$ is a global section.
A probability table can be represented by a family $\left\{p_{C}\right\}_{C \in \mathcal{M}}$ with p_{C} a probability distribution on $\mathcal{E}(C)=O^{C}$, where contexts C corresponds to the rows of the table.

Empirical Models

Empirical Models

The logical and strong forms of contextuality are concerned with possibilities, which can be represented by a subpresheaf \mathcal{S} of \mathcal{E}, where for each context $U \subseteq X$, $\mathcal{S}(U) \subseteq O^{U}$ is the set of all possible outcomes.

Empirical Models

The logical and strong forms of contextuality are concerned with possibilities, which can be represented by a subpresheaf \mathcal{S} of \mathcal{E}, where for each context $U \subseteq X$, $\mathcal{S}(U) \subseteq O^{U}$ is the set of all possible outcomes.

Explicitly, \mathcal{S} is defined as follows, where $\operatorname{supp}\left(p_{C} \mid U \cap C\right)$ is the support of the marginal of p_{C} at $U \cap C$.

$$
\mathcal{S}(U):=\left\{s \in O^{U}|\forall C \in \mathcal{M} . s| U \cap C \in \operatorname{supp}\left(p_{C} \mid U \cap C\right)\right\}
$$

Empirical Models

The logical and strong forms of contextuality are concerned with possibilities, which can be represented by a subpresheaf \mathcal{S} of \mathcal{E}, where for each context $U \subseteq X$, $\mathcal{S}(U) \subseteq O^{U}$ is the set of all possible outcomes.

Explicitly, \mathcal{S} is defined as follows, where $\operatorname{supp}\left(p_{C} \mid U \cap C\right)$ is the support of the marginal of p_{C} at $U \cap C$.

$$
\mathcal{S}(U):=\left\{s \in O^{U}|\forall C \in \mathcal{M} \cdot s| U \cap C \in \operatorname{supp}\left(p_{C} \mid U \cap C\right)\right\}
$$

Abstracting from this situation, we assume we are dealing with a sub-presheaf \mathcal{S} of \mathcal{E} with certain properties.

Empirical Models

The logical and strong forms of contextuality are concerned with possibilities, which can be represented by a subpresheaf \mathcal{S} of \mathcal{E}, where for each context $U \subseteq X$, $\mathcal{S}(U) \subseteq O^{U}$ is the set of all possible outcomes.

Explicitly, \mathcal{S} is defined as follows, where supp $\left(p_{C} \mid U \cap C\right)$ is the support of the marginal of p_{C} at $U \cap C$.

$$
\mathcal{S}(U):=\left\{s \in O^{U}|\forall C \in \mathcal{M} . s| U \cap C \in \operatorname{supp}\left(p_{C} \mid U \cap C\right)\right\}
$$

Abstracting from this situation, we assume we are dealing with a sub-presheaf \mathcal{S} of \mathcal{E} with certain properties.

We can use this formalisation to characterize contextuality as follows.

Definition

For any empirical model \mathcal{S} :

- For all $C \in \mathcal{M}$ and $s \in \mathcal{S}(C), \mathcal{S}$ is logically contextual at s, written $\operatorname{LC}(\mathcal{S}, s)$, if s is not a member of any compatible family.
- \mathcal{S} is strongly contextual, written $\operatorname{SC}(\mathcal{S})$, if $\operatorname{LC}(\mathcal{S}, s)$ for all s. Equivalently, if it has no global section, i.e. if $\mathcal{S}(X)=\varnothing$.

Summary of Cohomological Characterization

Summary of Cohomological Characterization

We have a cover

$$
\mathcal{U}=\left\{C_{1}, \ldots, C_{n}\right\}
$$

of measurement contexts.

Summary of Cohomological Characterization

We have a cover

$$
\mathcal{U}=\left\{C_{1}, \ldots, C_{n}\right\}
$$

of measurement contexts.
Given $s=s_{1} \in S_{e}\left(C_{1}\right)$, we define

$$
z=\delta^{0}\left(s_{1}, \ldots, s_{n}\right),
$$

where $s_{1}\left|c_{1} \cap c_{i}=s_{i}\right| c_{1} \cap c_{i}, i=1, \ldots, n$.

Summary of Cohomological Characterization

We have a cover

$$
\mathcal{U}=\left\{C_{1}, \ldots, C_{n}\right\}
$$

of measurement contexts.
Given $s=s_{1} \in S_{e}\left(C_{1}\right)$, we define

$$
z=\delta^{0}\left(s_{1}, \ldots, s_{n}\right),
$$

where $s_{1}\left|c_{1} \cap c_{i}=s_{i}\right| c_{1} \cap c_{i}, i=1, \ldots, n$.
This is a cocycle in the relative Čech cohomology with respect to C_{1}.

Summary of Cohomological Characterization

We have a cover

$$
\mathcal{U}=\left\{C_{1}, \ldots, C_{n}\right\}
$$

of measurement contexts.
Given $s=s_{1} \in S_{e}\left(C_{1}\right)$, we define

$$
z=\delta^{0}\left(s_{1}, \ldots, s_{n}\right),
$$

where $s_{1}\left|c_{1} \cap c_{i}=s_{i}\right| c_{1} \cap c_{i}, i=1, \ldots, n$.
This is a cocycle in the relative Čech cohomology with respect to C_{1}.
We define

$$
\gamma(s)=[z] \in \check{H}^{1}\left(\mathcal{U}, \mathcal{F}_{\bar{C}_{1}}\right)
$$

where \mathcal{F} is the AbGrp-valued presheaf $\mathbb{Z}\left[S_{e}\right]$.

Summary of Cohomological Characterization

We have a cover

$$
\mathcal{U}=\left\{C_{1}, \ldots, C_{n}\right\}
$$

of measurement contexts.
Given $s=s_{1} \in S_{e}\left(C_{1}\right)$, we define

$$
z=\delta^{0}\left(s_{1}, \ldots, s_{n}\right),
$$

where $s_{1}\left|c_{1} \cap c_{i}=s_{i}\right| c_{1} \cap c_{i}, i=1, \ldots, n$.
This is a cocycle in the relative Čech cohomology with respect to C_{1}.
We define

$$
\gamma(s)=[z] \in \check{H}^{1}\left(\mathcal{U}, \mathcal{F}_{\bar{c}_{1}}\right)
$$

where \mathcal{F} is the $\mathbf{A b G r p}$-valued presheaf $\mathbb{Z}\left[S_{e}\right]$.
Here γ is in fact the connecting homomorphism of the long exact sequence.

Basic Results

Basic Results

Proposition

The following are equivalent:
(1) The cohomology obstruction vanishes: $\gamma\left(s_{1}\right)=0$.
(2) There is a family $\left\{r_{i} \in \mathcal{F}\left(C_{i}\right)\right\}$ with $s_{1}=r_{1}$, and for all i, j :

$$
r_{i}\left|C_{i} \cap C_{j}=r_{j}\right| C_{i} \cap C_{j}
$$

Basic Results

Proposition

The following are equivalent:
(1) The cohomology obstruction vanishes: $\gamma\left(s_{1}\right)=0$.
(2) There is a family $\left\{r_{i} \in \mathcal{F}\left(C_{i}\right)\right\}$ with $s_{1}=r_{1}$, and for all i, j :

$$
r_{i}\left|C_{i} \cap C_{j}=r_{j}\right| C_{i} \cap C_{j}
$$

Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If e is not strongly contextual, then the obstruction vanishes for some section in the support.

Basic Results

Proposition

The following are equivalent:
(1) The cohomology obstruction vanishes: $\gamma\left(s_{1}\right)=0$.
(2) There is a family $\left\{r_{i} \in \mathcal{F}\left(C_{i}\right)\right\}$ with $s_{1}=r_{1}$, and for all i, j :

$$
r_{i}\left|C_{i} \cap C_{j}=r_{j}\right| C_{i} \cap C_{j}
$$

Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If e is not strongly contextual, then the obstruction vanishes for some section in the support.

Thus non-vanishing of the obstruction provides a cohomological witness for contextuality.

Notes on Cohomology

Notes on Cohomology

- There are false positives because of negative coefficients in cochains.

Notes on Cohomology

- There are false positives because of negative coefficients in cochains.
- We can effectively compute (mod 2) witnesses in many cases of interest: GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, ...

Notes on Cohomology

- There are false positives because of negative coefficients in cochains.
- We can effectively compute (mod 2) witnesses in many cases of interest: GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, ...
- In recent work, we obtain very general results in cases where the outcomes themselves have a module structure (over the same ring as the cohomology coefficients).

Notes on Cohomology

- There are false positives because of negative coefficients in cochains.
- We can effectively compute (mod 2) witnesses in many cases of interest: GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, ...
- In recent work, we obtain very general results in cases where the outcomes themselves have a module structure (over the same ring as the cohomology coefficients).
- This yields cohomological characterisations of All-vs.-Nothing proofs (Mermin). These account for most of the contextuality arguments in the quantum literature. In particular, we can find large classes of concrete examples in stabiliser QM.

Theorem

Let \mathcal{S} be an empirical model on $\langle X, \mathcal{M}, R\rangle$. Then:

$$
\operatorname{AvN}_{R}(\mathcal{S}) \Rightarrow \operatorname{SC}(\operatorname{Aff} \mathcal{S}) \Rightarrow \operatorname{CSC}_{R}(\mathcal{S}) \Rightarrow \operatorname{CSC}_{\mathbb{Z}}(\mathcal{S}) \Rightarrow \operatorname{SC}(\mathcal{S})
$$

Relational databases

Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.

Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal description we have given for the quantum notions of non-locality and contextuality, and basic definitions and concepts in relational database theory.

Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal description we have given for the quantum notions of non-locality and contextuality, and basic definitions and concepts in relational database theory.

Samson Abramsky, 'Relational databases and Bell's theorem', In In Search of Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter Buneman, Springer 2013.

Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal description we have given for the quantum notions of non-locality and contextuality, and basic definitions and concepts in relational database theory.

Samson Abramsky, 'Relational databases and Bell's theorem', In In Search of Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter Buneman, Springer 2013.

branch-name	account-no	customer-name	balance
Cambridge	$10991-06284$	Newton	$£ 2,567.53$
Hanover	$10992-35671$	Leibniz	$€ 11,245.75$
\ldots	\ldots	\ldots	\ldots

From possibility models to databases

From possibility models to databases

Consider again the Hardy model:

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1	1	1	1
$\left(a_{1}, b_{2}\right)$	0	1	1	1
$\left(a_{2}, b_{1}\right)$	0	1	1	1
$\left(a_{2}, b_{2}\right)$	1	1	1	0

From possibility models to databases

Consider again the Hardy model:

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	1	1	1	1
$\left(a_{1}, b_{2}\right)$	0	1	1	1
$\left(a_{2}, b_{1}\right)$	0	1	1	1
$\left(a_{2}, b_{2}\right)$	1	1	1	0

Change of perspective:
$a_{1}, a_{2}, b_{1}, b_{2}$
0, 1
joint outcomes of measurements tuples

The Hardy model as a relational database

 The four rows of the model turn into four relation tables:| a_{1} | b_{1} |
| :---: | :---: |
| 0 | 0 |
| 0 | 1 |
| 1 | 0 |
| 1 | 1 |

a_{1}	b_{2}
0	1
1	0
1	1

a_{2}	b_{1}
0	1
1	0
1	1

a_{2}	b_{2}
0	0
1	0
0	1

The Hardy model as a relational database

The four rows of the model turn into four relation tables:

a_{1}	b_{1}
0	0
0	1
1	0
1	1

a_{1}	b_{2}
0	1
1	0
1	1

a_{2}	b_{1}
0	1
1	0
1	1

a_{2}	b_{2}
0	0
1	0
0	1

What is the DB property corresponding to the presence of non-locality/contextuality in the Hardy table?

The Hardy model as a relational database

The four rows of the model turn into four relation tables:

a_{1}	b_{1}
0	0
0	1
1	0
1	1

a_{1}	b_{2}
0	1
1	0
1	1

a_{2}	b_{1}
0	1
1	0
1	1

a_{2}	b_{2}
0	0
1	0
0	1

What is the DB property corresponding to the presence of non-locality/contextuality in the Hardy table?

There is no universal relation: no table

a_{1}	a_{2}	b_{1}	b_{2}
\vdots	\vdots	\vdots	\vdots

whose projections onto $\left\{a_{i}, b_{i}\right\}, i=1,2$, yield the above four tables.

A dictionary

A dictionary

Relational databases	measurement scenarios
attribute	measurement
set of attributes defining a relation table	compatible set of measurements
database schema	measurement cover
tuple	local section (joint outcome)
relation/set of tuples	boolean distribution on joint outcomes
universal relation instance	global section/hidden variable model
acyclicity	Vorob'ev condition

A dictionary

Relational databases	measurement scenarios
attribute	measurement
set of attributes defining a relation table	compatible set of measurements
database schema	measurement cover
tuple	local section (joint outcome)
relation/set of tuples	boolean distribution on joint outcomes
universal relation instance	global section/hidden variable model
acyclicity	Vorob'ev condition

We can also consider probabilistic databases and other generalisations; cf. provenance semirings.

Contextual Semantics

Contextual Semantics

Why do such similar structures arise in such apparently different settings?

Contextual Semantics

Why do such similar structures arise in such apparently different settings?
The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, ... biology, economics, ...

Contextual Semantics

Why do such similar structures arise in such apparently different settings?
The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, ... biology, economics, ...
The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

Contextual Semantics

Why do such similar structures arise in such apparently different settings?
The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, ... biology, economics, ...
The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

Contextual Semantics

Why do such similar structures arise in such apparently different settings?
The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, ... biology, economics, ...
The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

- Quantum information and foundations: hierarchy of contextuality, logical characterisation of Bell inequalities, classification of multipartite entangled states, cohomological characterisation of contextuality, structural explanation of macroscopic locality, ...

Contextual Semantics

Why do such similar structures arise in such apparently different settings?
The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, ... biology, economics, ...
The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

- Quantum information and foundations: hierarchy of contextuality, logical characterisation of Bell inequalities, classification of multipartite entangled states, cohomological characterisation of contextuality, structural explanation of macroscopic locality, ...
- And beyond: connections with databases, robust refinement of the constraint satisfaction paradigm, application of contextual semantics to natural language semantics, connections with team semantics in Dependence logics, ...

Contextual Semantics

Why do such similar structures arise in such apparently different settings?
The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, ... biology, economics, ...
The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

- Quantum information and foundations: hierarchy of contextuality, logical characterisation of Bell inequalities, classification of multipartite entangled states, cohomological characterisation of contextuality, structural explanation of macroscopic locality, ...
- And beyond: connections with databases, robust refinement of the constraint satisfaction paradigm, application of contextual semantics to natural language semantics, connections with team semantics in Dependence logics, ...

For an accessible overview of Contextual Semantics, see the article in the Logic in Computer Science Column, Bulletin of EATCS No. 113, June 2014 (and arXiv).

People

Comrades in Arms in Contextual Semantics:

People

Comrades in Arms in Contextual Semantics:

People

Comrades in Arms in Contextual Semantics:

Adam Brandenburger, Lucien Hardy, Shane Mansfield, Rui Soares Barbosa, Ray Lal, Mehrnoosh Sadrzadeh, Phokion Kolaitis, Georg Gottlob, Carmen Constantin, Kohei Kishida

Some Recent Developments

Some Recent Developments

- Hardy is almost everywhere: with bipartite exceptions, an algorithm which given an n-qubit entangled state, constructs $n+2$ local observables leading to a logically contextual model.

Some Recent Developments

- Hardy is almost everywhere: with bipartite exceptions, an algorithm which given an n-qubit entangled state, constructs $n+2$ local observables leading to a logically contextual model.
- Characterization of the face lattice of the No-Signalling polytope as isomorphic to the support lattice.

Some Recent Developments

- Hardy is almost everywhere: with bipartite exceptions, an algorithm which given an n-qubit entangled state, constructs $n+2$ local observables leading to a logically contextual model.
- Characterization of the face lattice of the No-Signalling polytope as isomorphic to the support lattice.
- General characterisation of All-versus-Nothing arguments. Use of sheaf cohomology to capture contextuality for all such models. Large classes of quantum examples using stabiliser groups.

References

Papers (available on arXiv):

- S. Abramsky and A. Brandenburger. The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics, 13(2011):113036, 2011.
- S. Abramsky, S. Mansfield and R. Soares Barbosa, The Cohomology of Non-Locality and Contextuality, in Proceedings of QPL 2011, EPTCS 2011.
- S. Abramsky and L. Hardy. Logical Bell Inequalities. Phys. Rev. A 85, 062114 (2012).
- S. Abramsky, Relational Hidden Variables and Non-Locality. Studia Logica 101(2), 411-452, 2013.
- S. Abramsky, Relational Databases and Bell's Theorem, In In Search of Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter Buneman, Springer 2013.
- S. Abramsky, G. Gottlob and P. Kolaitis, Robust Constraint Satisfaction and Local Hidden Variables in Quantum Mechanics, Proceedings IJCAI 2013.
- S. Abramsky, Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane

Mansfield, Contextuality, Cohomology and Paradox. Submitted, 2015.

